Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Frontiers in immunology ; 14, 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2247729

RESUMEN

Introduction Severe COVID-19 originates a myriad of alterations in the immune system during active disease, especially in the T and NK cell compartments, but several studies in the last year have unveiled some alterations that persist in convalescence. Although most of the studies follow the participants for a short recovery time, studies following patients up to three or six months still find alterations. We aimed at evaluating changes in the NK, T and B cell compartments after severe COVID-19 in participants with a median recovery time of eleven months. Methods Eighteen convalescent of severe COVID-19 (CSC), 14 convalescent of mild COVID-19 (CMC) and nine controls were recruited. NKG2A, NKG2C, NKG2D and the activating receptor NKp44 were evaluated in NKbright, NKdim and NKT subpopulations. In addition, CD3 and CD19 were measured and a basic biochemistry with IL-6 levels was obtained. Results CSC participants showed lower NKbright/NKdim ratio, higher NKp44 expression in NKbright subpopulations, higher levels of serum IL-6, lower levels of NKG2A+ T lymphocytes and a trend to a lower expression of CD19 in B lymphocytes compared to controls. CMC participants showed no significant alterations in the immune system compared to controls. Conclusions These results are concordant with previous studies, which find alterations in CSC weeks or months after resolution of the symptoms, and point to the possibility of these alterations lasting one year or more after COVID-19 resolution.

2.
Front Immunol ; 14: 1127352, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2247730

RESUMEN

Introduction: Severe COVID-19 originates a myriad of alterations in the immune system during active disease, especially in the T and NK cell compartments, but several studies in the last year have unveiled some alterations that persist in convalescence. Although most of the studies follow the participants for a short recovery time, studies following patients up to three or six months still find alterations. We aimed at evaluating changes in the NK, T and B cell compartments after severe COVID-19 in participants with a median recovery time of eleven months. Methods: Eighteen convalescent of severe COVID-19 (CSC), 14 convalescent of mild COVID-19 (CMC) and nine controls were recruited. NKG2A, NKG2C, NKG2D and the activating receptor NKp44 were evaluated in NKbright, NKdim and NKT subpopulations. In addition, CD3 and CD19 were measured and a basic biochemistry with IL-6 levels was obtained. Results: CSC participants showed lower NKbright/NKdim ratio, higher NKp44 expression in NKbright subpopulations, higher levels of serum IL-6, lower levels of NKG2A+ T lymphocytes and a trend to a lower expression of CD19 in B lymphocytes compared to controls. CMC participants showed no significant alterations in the immune system compared to controls. Conclusions: These results are concordant with previous studies, which find alterations in CSC weeks or months after resolution of the symptoms, and point to the possibility of these alterations lasting one year or more after COVID-19 resolution.


Asunto(s)
COVID-19 , Convalecencia , Humanos , Interleucina-6 , Proteínas Adaptadoras Transductoras de Señales , Células Asesinas Naturales
3.
Metabolites ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2143377

RESUMEN

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered patients do not show any metabolic fingerprint associated with the disease or immune alterations. Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies the exacerbated immunological response, resulting in a slow recovery time with a maximum probability of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion, age and severity become factors that modulate their normalization time which, in turn, correlates with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic risk, in line with the recent observation of an elevated number of cardiovascular episodes found in post-COVID-19 cohorts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA